UTILITY SYSTEM – COMPRESSORS AND PUMPS

Life Cycle Cost

Initial Cost 5% Naintenance Cost 5%

© Confederation of Indian Industry

COMPRESSED AIR SYSTEM

Energy Cost of Running Air Compressor

Which is 4 times the cost of Compressor itself !!

© Confederation of Indian Industry

Sankey Diagram of Compressed Air System

Compressed Air: Most Expensive Form of Energy!

Air Compressors

Reciprocating and Screw Compressor

Two Stage Reciprocating Compressor

Inter-cooler & After cooler

>Inter cooling reduces temperature &
volume

>After cooler reduces the moisture

Inter cooler and After cooler

Recommended Installation

Capacity Test (Pumping Method)

Average Compressor Delivery =

- P_1 = Initial pressure in receiver
- P_2 = Final pressure in receiver
- P = Atmospheric pressure
- V_R = Volume of air receiver
- Δt = Time taken for charging the receiver from P₁ to P₂

Check list for efficient operation of Compressor

Dry Air Intake

ŧ.

	TABLE 3.2 EFFECT OF CONSUMPTI	INTAKE AIR TEMPERATURE ON ON	POWI
	Inlet Temperature (°C)	Relative Air Delivery (%)	
	10.0	102.0	
	15.5	100.0	
No. of Concession, name	21.1	98.1	
×~~>	26.6	96.3	
K	32.2	94.1	
N.	37.7	92.8	
K1	43.3	91.2	

e Air Delivery (%) Power Saved (%) 102.0 + 1.4 100.0 Nil 98.1 - 1.3 96.3 -2.5 94.1 - 4.0 92.8 - 5.0 91.2 - 5.8

Every 4 temperatu energy consumption by 1 % to achieve equivalent output

Compressor Room

5 compressors available

660 CFM, 7.5 bar, 110 kW

3 compressors are required to be operated

Νο	
CP1	
CP2	
СРЗ	
CP4	
CP5	

Νο	kW	
CP1	110	
CP2	90	
CP3	100	
CP4	105	
CP5	95	
	© Confederation of Indian Industry	

KVV		
110	660	
00	FOO	
90	500	
100	600	
105	645	
105	045	
95	470	
		<u>CI</u>
	110 90 100 105 95 © Confederation of Indian Ind	110 660 90 500 100 600 105 645 95 470 ° Confederation of Indian Industry

No	kW	FAD	kW / CFM
CP1	110	660	0.17
CP2	90	500	0.18
CP3	100	600	0.17
CP4	105	645	0.16
CP5	95	470	0.20
	© Confederation of	Indian Industry	

Always select compressor based on SEC (kW/CFM) not on kW and CFM separately

Comparison of Specific Power Consumption

	Reciprocating	Centrifuga	al Screw (Single stage)	Screw (Multi stage)
FAD	3950 CFM at 7kg/cm ²			
kW	549	515	632	510
Specific Power (kW/CFM)	0.139	0.130	0.162	0.129

Replacement of Inefficient Compressor

Power Savings 25 %

© Confederation of Indian Industry

System Losses waste 20%!!

- Pressure Loss in Pipelines, Bends & Valves
- > Air Leakages from Corroded Pipe
- Pressure Loss in After Coolers, Moisture Separato
- > Air leakages in joints & end connections
- Pressure Loss across Filters & Dryers

Leading to Compressor operation at Higher Pressure to overcome these losses!

Inefficient Piping Layout

Minimise Leakages

God has given abundant air, which is free!!

But ... compressed air is not free!!

© Confederation of Indian Industry

Common Leak Locations

Common Leak Locations

© Confederation of Indian Industry

Leakage Test

- Close all user points
- Charge the lines
- Note: On-load time of compressor (T) Off-load time of compressor (t)
- Q : Capacity of compressor

Cost Of Leakage At 7kg/cm²

Orifice (mm)	Air Leakage (CFM)	Power Wasted (kW)	Annual Savings @ Rs 5/kWh
1.6	6.5	1.26	Rs 0.60 Lakhs
3.2	26	5.04	Rs 2.40 Lakhs
6.4	104	20.19	Rs 7.25 Lakhs

© Confederation of Indian Industry

Optimal Utilisation of Compressors

37 kW Compressor Loading – 30 % (27 kW) Unloading – 70 % (9 kW)

Install new 15 kW Compressor Use existing compressor as standby

Rs 0.5 Lakhs Savings <12 Months Payback

© Confederation of Indian Industry

Pressure Reduction

Concept - Conventional Control

Concept - VFD Control

Savings in Unload Power

- Compressors Designed to meet Fluctuating Load
- Fluctuating Load Leads to Load / Unload
- Lean Time Unload
- Unload power 15 40%
- * No useful work
- * VSD Avoids Unloading of Compressors

Install VFD for One Compressor

Use Transvector Nozzle In Air Hose

© Confederation of Indian Industry

PUMPING SYSTEM

Centrifugal Pumps

Centrifugal

- Moderate pressure (upto 6000 m WC)
- Moderate capacity (upto 10,000 m³/h)
- General applications

Positive Displacement Pumps

Reciprocating

- High pressure upto 10,000 m WC
- Low capacity upto 1000 m³/h
- Lubrication oil pumps

Energy Parameters

© Confederation of Indian Industry

Efficiency of Pump

Pump η (%) = Flow (lps) x (h2-h1) (m) x Sp. Gr. 102 x P_{out}

Pumps Formulae

Capacity α (RPM)
 Head α (RPM)²
 Power α (Capacity x Head)
 α (RPM)³

If the RPM is reduced by say 10%, what will happen to the

- Capacity : reduces by 10%
- Head : reduces by 19%
- * Power : reduces by 27%

© Confederation of Indian Industry

Operating Conditions of Pump

CII

Operating Conditions of Pump

Reasons for excess power consumption

- Wrong Selection
- Over Design
- Improper Layout
- Old inefficient pumps
- Multiple smaller size pumps

Operating Conditions of Pump

Operating Conditions of Pump

Use Gravity Flow as Much as Possible

Methodology of Pump Survey

- Is the pump correctly Sized ?
 - Excess capacity due to uncertainty
- Leads to operation with valve throttling
 - Energy inefficient practice
 - Impeller reduction
 - Low capacity/head pump
 - Installation of variable speed drive

Installation of correct size pump

CII

© Confederation of Indian Industry

Pressure Drop Across Valve

Effect of Valve Throttling

<u>Design</u>		
Capacity	=	85 lps
Head	=	4 ksc
Existing	=	4.8 ksc
kW _{EX}	=	55 x 48/(102 x 0.7)
•	=	37.0 kW

Effect of Valve Throttling

Modified		
Proposed	=	3.0 ksc
kW _P	=	55 x 30/(102 x 0.7)
	=	23.0 kW
Savings	=	14 kW

Segregate high and low head users

Annual Savings	= Rs. 4.80 Lakhs
Investment	= Rs. 6.00 Lakhs
Payback period	= 15 Months

VFD for Pumping system

58

Install TIC for the cooling tower fan

DT = 2.4 degC

Install TIC for the cooling tower fan

Recommendation

- Install TIC and control fan operation
- Automate CT fan operation based on the cold well temperature
 - CT fan switch OFF if cold well water temperature lesser than 24 °C
 - CT fan switch ON if cold well water temperature greater than 27 °C
- Savings can be achieved during favorable conditions

Install TIC for the cooling tower fan

Annual Saving	-	Rs 3700
Investment	-	Rs 2000
Payback	-	6 months

Energy Efficient Pumping System

motor (eff. ~ 95%)

© Confederation of Indian Industry

Thank You....

